The complex interplay between structure and function in the brain: from experiments to theory.

a. Pinwheel-Dipole Topology of the cat visual cortex

Jonathan Touboul (Collège de France & Inria)

Mathematical Neuroscience Team Center for Interdisciplinary Research in Biology &

Mycenae Team

Between Theory and Applications: Mathematics in Action – Bedlewo – May 2015

Collaborators (a disclaimer)

J. Ribot (postdoc @ Mathematical Neuroscience Team), experimentalist A. Romagnoni (postdoc @ Mathematical Neuroscience Team), physicist D. Bennequin and C. Milleret (experimental setup)

How concurrent representation of sensory features is organized in neocortex?

The visual system organisation

« Where » Position, Depth, Motion...

V1

« What » Shape, Color, Texture...

Primary Visual Cortex V1 (A17)

Attributes of the visual scene

Shape

Details (Spatial frequency)

Colors

Depth

Attributes of the visual scene

Shape

Motion

Details (Spatial frequency)

Colors

Depth

Electrophysiology

Hubel & Wiesel 1962

Electrophysiology

Hubel & Wiesel 1962

Electrophysiology

Hubel & Wiesel 1962

•Optical imaging

Bonhöffer & Grinvald 1991

Electrophysiology

Hubel & Wiesel 1962

•Optical imaging

Bonhöffer & Grinvald 1991

Electrophysiology

Hubel & Wiesel 1962

•Optical imaging

Bonhöffer & Grinvald 1991

The example of the orientation map

Cat visual cortex

• • • • Transition zone

The example of the orientation map

Cat visual cortex

• • • • Transition zone

Universality of the map

Kaschube et al, Science (2010)

1mm

Organization of the spatial frequency preference

Perception of Spatial Frequency

Previous results

Movshon et al, J. Physiol (1978)

Cat

Issa et al, J. Neurosci (2000)

Cat

Uniform coverage Continuity-coverage compromise

Obermayer et al, PNAS (1990); Durbin and Mitchison, Nature (1990) Swindale et al, Nature Neuroscience (2000); Swindale, Cerebral Cortex (2000)

Nauhaus et al, Nature Neuroscience (2012)

Macaque

For cat, not clear orthogonal

Ribot et al, J. Neurosci (2013)

High-resolution optical imaging data

Raw data

OR & SF maps: same singularities

OR & SF maps: same singularities

OR & SF maps: same singularities

Statistics: 86% (59/69) of the PCs in A17 and 67% (51/76) in A18 present **BOTH** global **maximum** and global **minimum**. The others present one global extremum.

Confirmation from electrophysiology

The analogy with electric dipole potential

The analogy with electric dipole potential

Universal Mathematical Properties of the Pinwheel-Dipole Topology

Organizing Principles

Properties of the Pinwheel Architecture

OR representation around PC is exhaustive and parsimonious

Do these "organizing principles" extend to dipoles?

The geometric redundancy

Definition: The geometric redundancy is the maximal number of connected components of level sets of the map.

Geometric redundancy = 1 Geometric redundancy = 2

Proposition 1. A continuous surjective map from the disc to the circle, with geometric redundancy 1, has the topology of the pinwheel.

 θ_1

X

 Θ_0

 θ_2

Dipole is the universal topology for SF

For SF we consider an **open** interval, which is equivalent to considering continuous representations of the whole real line.

Continuous maps from the disc to \mathbb{R} cannot be surjective without singularities. We consider the simplest maps with one singular point.

Regularity: the map is smooth.

Exhaustivity: the map is surjective in any neighbourhood of 0.

Parsimony: the topological redundancy is minimal at any scale.

Dipole is the universal topology for SF (regularity, exhaustivity, parsimony)

Minimality

Proposition 1. Exhaustivity cannot exist without a singularity. On the pointed disc, exhaustive maps cannot have redundancy 1

Dipole is the universal topology for SF (regularity, exhaustivity, parsimony)

Minimality

Proposition 1. Exhaustivity cannot exist without a singularity. On the pointed disc, exhaustive maps cannot have redundancy 1

Uniqueness (apart from isolated defects)

Theorem. A continuous map satisfying regularity, exhaustivity and parsimony, has the topology of the dipole.

Idea of the proof: Exhaustivity implies the existence of an 8-shape bouquet, the rest can only be completed by 2 arcs connecting the singularity to the boundary

Dipole Models

Neuro-geometrical (local) model

OR pinwheels

Angles distribution fits data

Angles distribution fits data

Angles distribution fits data

Fit of the dipole model

Taking into account angular variability

Tuesday, May 19, 15

 $SF\sim \frac{\cos \varphi}{2}$

r

Coding properties of Pinwheel-Dipoles

Preferred OR/SF space

Preferred OR/SF space

Preferred OR/SF space

Fit of the putative orthogonal model

$$\nu_{pol}(r,\phi) = \nu_{max} - \beta r$$
$$\beta = \Delta \nu_{extr}/d$$

Coding/Decoding algorithm Local Detection

 $\{OR_{pref}, SF_{pref}\}$

Coding/Decoding algorithm Local Detection

 $\{OR_{pref}, SF_{pref}\}$

 OR_{stim}, SF_{stim}

Coding/Decoding algorithm

Coding/Decoding algorithm

Coding/Decoding algorithm

Tuesday, May 19, 15

Robustness of balanced detection paradigm

Conclusion

show singularities co-localized with the pinwheels

• SF map can be locally modeled by dipoles

 General organizing principles (exhaustivity and parsimony) seem to be involved

 Pinwheel-Dipoles architectures show comparable (or better) efficient local coding properties than uniform coverage

 A trade-off can explain the sharpening of tuning widths near pinwheel centers found experimentally

Open questions:

- How and why are these results species dependent?
- Why different singularities are co-localized? Das and Gilbert, Nature 1997

If "local is good", why not more pinwheels? Is there another trade-off in the game? Interaction with other principles (continuity/coverage)? Keil and Wolf, Neural Systems & Circuits (2011); Reichl et al., (I and II), PLOS Comp. Bio. (1990)

• Can balance detection paradigm be experimentally Bradley et al., J. of Neurophysiology 1987; Jacobson et al., 1975

Alberto Romagnoni Jérôme Ribot Daniel Bennequin Chantal Milleret

J.Ribot*, A. Romagnoni*, C.Milleret, D. Bennequin, J. Touboul, bioRxiv doi: 10.1101/009308. Submitted to Cerebral Cortex

A. Romagnoni*, J.Ribot*, D. Bennequin, J. Touboul, arxiv:1409.4927[q-bio.NC]. In Revision in Plos Comp. Biol.