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Collaborators (a disclaimer)

It is mathematically convenient
to assume that the brain consists of
two coupled oscillators. ..

How concurrent representation of sensory features
IS organized In neocortex?




The visual system organisation
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Attributes of the visual scene
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Local selectivity in V1

oElectrophysiology

Hubel & Wiesel 1962
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Local selectivity in V1
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Local selectivity in V1
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The example of the orientation map

Cat visual cortex
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The example of the orientation map

Cat visual cortex

coraing chamboer




Universality of the map

Laurasiatherian

ancestor Carnivora

Kaschube et al,
Science (2010)
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Organization of the spatial
frequency preference




Perception of Spatial Frequency
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Previous results
Cat

Movshon et al,
J. Physiol (1978)
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Uniform coverage

Continuity-coverage compromise

Obermayer et al, PNAS (1990); Durbin and Mitchison, Nature (1990)
Swindale et al, Nature Neuroscience (2000); Swindale, Cerebral Cortex (2000)

Nauhaus et al,
Nature Neuroscience

(2012)
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For cat, not clear orthogonal

Ribot et al,
J. Neurosci (2013)
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High-resolution optical
iImaging data
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OR & SF maps: same singularities
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OR & SF maps: same singularities

007 024 08 27

Tuesday, May 19, 15



OR & SF maps: same singularities

Al7 Al8
:
286% 67%

Statistics: 86% (59/69) of the PCs in Al7 and 67% (51/76) in Al8

present BOTH global maximum and global minimum.
The others present one global extremum.
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Confirmation from electrophysiology
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The analogy with electric dipole potential




The analogy with electric dipole potential

AN = //@

|
V




Universal Mathematical Properties
of the Pinwheel-Dipole Topology




Organizing Principles

Properties of the Pinwheel Architecture

OR representation around PC
is exhaustive and parsimonious

Do these “organizing principles” extend to dipoles?
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The geometric redundancy

Geometric redundancy =1 Geometric redundancy = 2
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Pinwheel is the universal topology for angles

(under local exhaustivity and parsimony)
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Dipole is the universal topology for SF

For SF we consider an open interval, which is equivalent fo
considering continuous representations of the whole real line.

Continuous maps from the disc to R cannot be surjective without
singularities. We consider the simplest maps with one singular point.

4 A

the map is smooth.

the map is surjective in any neighbourhood of O.

the topological redundancy is minimal at any scale.

. /
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Dipole is the universal topology for SF

(regularity, exhaustivity, parsimony)

Minimality
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Dipole is the universal topology for SF

(regularity, exhaustivity, parsimony)

Minimality

Uniqueness (apart from isolated defects)

Exhaustivity implies the existence of an 8-shape
bouquet, the rest can only be completed by 2 arcs connecting the

singularity to the boundary
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Dipole Models




Neuro-geometrical (local) model

OR pinwheels

To compare:
Orthogonal
Architecture
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Angles distribution fits data
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Angles distribution fits data
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Angles distribution fits data
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Fit of the dipole model

C Restatistics (R > 0.9




Coding properties of
Pinwheel-Dipoles
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Fit of the putative orthogonal model
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Coding/Decoding algorithm
Local Detection

{ORprefa SFp?“ef}




Coding/Decoding algorithm
Local Detection

{ORprefa SFpref}




Coding/Decoding algorithm
Local Detection
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Coding/Decoding algorithm
Local Detection
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Coding/Decoding algorithm
Local Detection
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A “prediction” of the model: Trade-off
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A “prediction” of the model: Trade-off
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A “prediction” of the model: Trade-off
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A “prediction” of the model: Trade-off
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A “prediction” of the model: Trade-off
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A “prediction” of the model: Trade-off

30 %\‘V/‘\
: |
5 20 _ =
©
> o 0 100 200 300 400 500

Distance from PCs (um)

' A18

A

0

1 2.5 4
Spatial ff ‘ency FWHH (octaves)

Trade-off?
Shift wrt experimental

value?

SF FWHH (octave)

100 200 300 400 500

Distance from PCs (um)

Z 0‘ ‘ OR \
1 2.5 4

Spatial frequency FWHH (octaves)

Tuesday, May 19, 15



A “prediction” of the model: Trade-off
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Robustness of balanced detection paradigm
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Conclusion




show singularities co-localized with the
pinwheels

 SF map can be locally modeled by dipoles

e General organizing principles (exhaustivity
and parsimony) seem to be involved

* Pinwheel-Dipoles architectures show
comparable (or better) efficient local coding
properties than uniform coverage

e A trade-off can explain the sharpening of
tuning widths near pinwheel centers found
experimentally




Open questions:

e How and why are these results species dependent ?

 Why different singularities are co-localized?
Das and Gilbert, Nature 1997

e If"local is good”, why not more pinwheels? Is there
another trade-off in the game? Interaction with other

rinciples (continuity/coveraqge
ell aanolF Neural Sys¥ ms & Cir u|2s (2011);

Reichl et al., (I and II), PLOS Comp. Bio. (1990)

* Can balance detection paradigm be experimentally

Bradley et al., J. of Neurophysiology 1987; Jacobson et al., 1975
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